# R. D. RAJPAL SCHOOL **MID TERM EXAM** (2017-18)

CLASS - IX

Time Allowed: 3 Hours

SUBJECT - MATHS, SET - B

Max Marks: 80

### General Instructions:

All questions are compulsory. 1.

The question paper consist of 30 questions civided into 4 sections - A, B, C and D. Section A comprises of 6 questions of one mark each, Section B comprises of 6 questions (7-12) of two marks each, Section C comprises of 10 questions (13-22) of three marks each and Section D comprises of 8 questions (23-30) of four marks each.

Rough work must be shown on right hand side of the answer.

#### SECTION - A

Write the value of  $-\sqrt[3]{7} \times \sqrt[3]{49}$ 

Evaluate 97 × 97 using identities.

Name the point of intersection of coordinate axes.

How many lines can be drawn through a given point?

Write the supplement of an angle of measure  $2x^{\circ}$ . 3 5X

Of the three angles of a triangle one is twice the smallest and another is three times the smallest. Find the angles. 26

## SECTION - B

- The perimeter of a triangular field is 54° m. If is sides are in the ratio 25:17:12, find the area of the triangle.
- In a parallelogram ABCD,  $\angle D = 75^{\circ}$ . Find  $\angle A$  and  $\angle B$ . (8)
- If a + b = 10, ab = 21, find value of  $a^3 + b^3$ . 9)
- Write the value of  $48^3 30^3 18^3$ 10)



- Find the area of triangle formed by the points A (0,1), B (0,5) and C (3,4).
- 12) In the figure, If AC=BD, then prove that AB = CD.



### SECTION - C

- 13) If tay OC stands on a line AB such that  $\angle AOC = \angle COB$ , then show that  $\angle AOC = 90^{\circ}$ .
- 14) AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD. Show that  $\angle B > \angle D$ .



- Find the area of an equilateral triangle having each side of 8 cm.
- 16) The angles of a quadrilateral are in the ratio 1:2:4:5. Find the measure of all the angles.
- 17) Find six rational numbers between 4 and 5.
- 18 If  $x^2 1$  is a factor of  $ax^4 + bx^3 + cx^2 + dx + e$ . Show that a + c + e = b + d = 0
- 19) Give the equations of two lines passing through (3, 12). How many more such lines are there?
- 20) Komal was driving a car with uniform speed 50 l m/hour. Draw distance-time graph. From the graph, find the distance travelled by Komal in  $3\frac{1}{2}$  hours.
- 21) In the given figure,  $AB \parallel CD$ . Find the value of  $\angle x$ .



In the given figure, AD and BE are respectively altitudes of an isosceles  $\triangle$  ABC such that AC = BC. Prove that AE = BD.



### SECTION - D

Draw the graph of the following linear equations on the same axes x + y = 3, 3x - 2y = 4. Also shade the region formed by their graphs and Y axis.

24) Prove that diagonals of a parallelogram bisect each other.

25) If  $x = \frac{\sqrt{5}-2}{\sqrt{5}+2}$ , then prove that  $x^4 + \frac{1}{x^4}$  is an integer.

The polynomial  $p(x) = x^4 - 2x^3 + 3x^2 - ax + 3a - 7$  when divided by x + 1 leaves remainder 19. Find the value of a. Also find the remainder when p(x) is divided by x - 2.

In the given figure, PQRS is a square and SRT is an equilateral triangle. Prove that PT = QT and  $\angle TQR = 15^{\circ}$ .



28) Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

29) In the given figure, if  $OP \parallel RS$ ,  $\angle OPQ = 110^{\circ}$  and  $\angle QRS = 130^{\circ}$ , then determine  $\angle PQR$ .



Two parallel sides of a trapezium are 25cm and 13cm and other two sides are 15cm and 15cm. Find the area of the trapezium.